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The ”location” of information

The (standard) "infon” view: physical objects (or configurations of
such objects) have information values (contain information),
typically stuff outside minds, like books, radio signals or symbols
on a screen

Example: this note contains 2 bits of information

Another view: nothing outside of minds has information values
except in a derived sense — what carries information are belief
state transitions

Example: | just made a 4-bit belief change
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Roughly: a given object has information content w.r.t. a specified
belief state (possibly part of a mind) to the extent that the object
(typically when perceived) would (counterfactually) induce a
change in that state

Example: this book contains 2 bits of information w.r.t. Bob’s
current belief state, since it would induce a 2-bit information gain,
were he to read it (but he hasn't yet...)

Also, if Bob read it and updated his beliefs as much as the book
has potential to do so, the book no longer contains information.
For Bob.

Information content changes over time
Information content differs between observers
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Let’s call the amount of information |, and then consider some
probability function p

Different views on what p is in different analyses
Improbable things (events) "contain” a lot: | is big if p(e) is small

It has something to do with truth: | is small for false statements
and big for true statements

People can gain it and lose it: Al can be positive or negative

Experiments can provide it, and at worst give us none (really?):
Al(experiment)z 0
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A Bayesian representation of belief state

» Subjective probability distributions over sets of hypotheses
» Discrete case

* Hypothesis set: H = {h,, h,,..., h_}, at most one is true

* Probability distribution p over H

» Belief change: p—q, p is prior, q is posterior

» Transition not necessarily rational

* So, the p right now is a subjective probability




Information gain of a (after a) transition

Objective information gain: belief (doxastic) movement towards
true belief

Subjective information gain: expected (with posterior q) objective
information gain

Objective information gain (bits):

— I(p,q) = log,(q(t)/p(t)), where tis the true hypothesis

Subijective information gain (bits):

- I"(p,q) = X q(M)log,(q(h)/p(h))

The amount of objective information gained is typically not

possible to assess for a believer, whereas the subjective
information gain typically is
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Objective information gain, example

Three men are suspected of stealing: Adam, Bob and Caesar
Bob did it

The investigator, Joan, has the following belief state:

— p(Adam) = 0.22, p(Bob) = 0.17, p(Caesar) = 0.61

Joan conducts interrogations with the suspects, after which her
belief state is the following:
— g(Adam) = 0.28, q(Bob) = 0.27, g(Caesar) = 0.45

Joan (objectively) gained log,(0.27/0.17) = 0.67 bits




Subjective information gain, example

« Same setting, same transition
— p(Adam) = 0.22, p(Bob) = 0.17, p(Caesar) = 0.61
— g(Adam) = 0.28, q(Bob) = 0.27, g(Caesar) = 0.45

» Joan (subjectively) gained 0.28 log,(0.28/0.22)+0.27
log,(0.27/0.17)+0.45 log,(0.45/0.61) = 0.08 bits

* So, she would perhaps consider the interrogations relatively
uninformative, whereas, in fact, they did bring her (beliefs) closer
to true belief




Some consequences of this view

» Dataless information gain (e.g. in mathematics or reasoning in
intelligence analysis)

* Irrational or unjustified information gain

« Unconvincing data are just data, not information (in the derived
sense)




Something about uncertainty

» Subjective probability is not a measure of uncertainty, it is a
measure of belief

» Uncertainty is measured in the same unit as information, e.g. bits
(base 2), nats (base e) or Hartleys (base 10)

» Uncertainty is the expected information gain upon reaching
certainty (not necessarily about the truth...)

* For Bayesian representations, the entropy of p is the only
reasonable measure of uncertainty




Brier scores are popular in forecasting, strictly proper and with a
useful decomposition

Benedetti (2010) has shown how the Brier score depends on
probabilities assigned to non-occurring events (nonlocality), which
IS undesirable

Two forecasters who assigned the same probability to the event
that occurred can get different scores

Additivity, locality, differentiability and strict propriety uniquely
picks out the logarithmic scoring rule
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« The logarithmic scoring rule is the negative (subjective)
information gain upon certainty, i.e. you're penalized if observing
(becoming certain of) the event provided you with a lot of
information

« The score coincides with the negative objective information gain if
what you become certain of is also the truth — a subtle difference,
but not unimportant for a scoring regime (issues will close on
certainty, not truth as such)
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The expected score for a given problem is, then, the negative
uncertainty (p-expectation of negative subjective information gain
upon certainty)

The expected score change after a soft update (not to certainty) is
(almost) the negative subjective information gain (g-expectation of
negative objective information gain)

For this to work out, there needs to be an overlap between the
probability that a given hypothesis is frue and the probability that
a given hypothesis is the one that a scoring regime will accept
certainty of at some point

If not, it of course gets more complicated...
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