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Information gain and approaching true belief (and 
something about uncertainty and scoring rules as well) 



Another perspective on information 

• The ”location” of information 
• The (standard) ”infon” view: physical objects (or configurations of 

such objects) have information values (contain information), 
typically stuff outside minds, like books, radio signals or symbols 
on a screen 

• Example: this note contains 2 bits of information 
• Another view: nothing outside of minds has information values 

except in a derived sense – what carries information are belief 
state transitions 

• Example: I just made a 4-bit belief change 



A derived sense of information contained 

• Roughly: a given object has information content w.r.t. a specified 
belief state (possibly part of a mind) to the extent that the object 
(typically when perceived) would (counterfactually) induce a 
change in that state 

• Example: this book contains 2 bits of information w.r.t. Bob’s 
current belief state, since it would induce a 2-bit information gain, 
were he to read it (but he hasn’t yet…) 

• Also, if Bob read it and updated his beliefs as much as the book 
has potential to do so, the book no longer contains information. 
For Bob. 

• Information content changes over time 
• Information content differs between observers 



But, what is information again? 

• Let’s call the amount of information I, and then consider some 
probability function p 

• Different views on what p is in different analyses 
• Improbable things (events) ”contain” a lot: I is big if p(e) is small 
• It has something to do with truth: I is small for false statements 

and big for true statements 
• People can gain it and lose it: ∆I can be positive or negative 
• Experiments can provide it, and at worst give us none (really?): 

∆I(experiment)≥ 0 



A Bayesian representation of belief state 

• Subjective probability distributions over sets of hypotheses 
• Discrete case 
• Hypothesis set: H = {h1, h2,…, hn}, at most one is true 
• Probability distribution p over H 
• Belief change: p→q, p is prior, q is posterior 
• Transition not necessarily rational 
• So, the p right now is a subjective probability 



Two analyses of information gain, ex post 

• Information gain of a (after a) transition 
• Objective information gain: belief (doxastic) movement towards 

true belief 
• Subjective information gain: expected (with posterior q) objective 

information gain 
• Objective information gain (bits): 

– 𝐼 𝑝, 𝑞 = 𝑙𝑜𝑔2(𝑞(𝑡)/𝑝(𝑡)), where t is the true hypothesis 
• Subjective information gain (bits): 

– 𝐼∗ 𝑝, 𝑞 =  𝑞(ℎ)𝑙𝑜𝑔2(𝑞(ℎ)/𝑝(ℎ)) 
• The amount of objective information gained is typically not 

possible to assess for a believer, whereas the subjective 
information gain typically is 



Objective information gain, example 

• Three men are suspected of stealing: Adam, Bob and Caesar 
• Bob did it 
• The investigator, Joan, has the following belief state: 

– p(Adam) = 0.22, p(Bob) = 0.17, p(Caesar) = 0.61 
• Joan conducts interrogations with the suspects, after which her 

belief state is the following: 
– q(Adam) = 0.28, q(Bob) = 0.27, q(Caesar) = 0.45 

• Joan (objectively) gained log2(0.27/0.17) ≈ 0.67 bits 



Subjective information gain, example 

• Same setting, same transition 
– p(Adam) = 0.22, p(Bob) = 0.17, p(Caesar) = 0.61 
– q(Adam) = 0.28, q(Bob) = 0.27, q(Caesar) = 0.45 

• Joan (subjectively) gained 0.28 log2(0.28/0.22)+0.27 
log2(0.27/0.17)+0.45 log2(0.45/0.61) ≈ 0.08 bits 

• So, she would perhaps consider the interrogations relatively 
uninformative, whereas, in fact, they did bring her (beliefs) closer 
to true belief 



Some consequences of this view 

• Dataless information gain (e.g. in mathematics or reasoning in 
intelligence analysis) 

• Irrational or unjustified information gain 
• Unconvincing data are just data, not information (in the derived 

sense) 



Something about uncertainty 

• Subjective probability is not a measure of uncertainty, it is a 
measure of belief 

• Uncertainty is measured in the same unit as information, e.g. bits 
(base 2), nats (base e) or Hartleys (base 10) 

• Uncertainty is the expected information gain upon reaching 
certainty (not necessarily about the truth…) 

• For Bayesian representations, the entropy of p is the only 
reasonable measure of uncertainty 



Proper scoring rules, information gain and 
uncertainty 
• Brier scores are popular in forecasting, strictly proper and with a 

useful decomposition 
• Benedetti (2010) has shown how the Brier score depends on 

probabilities assigned to non-occurring events (nonlocality), which 
is undesirable 

• Two forecasters who assigned the same probability to the event 
that occurred can get different scores 

• Additivity, locality, differentiability and strict propriety uniquely 
picks out the logarithmic scoring rule 



Proper scoring rules, information gain and 
uncertainty, contd. 
• The logarithmic scoring rule is the negative (subjective) 

information gain upon certainty, i.e. you’re penalized if observing 
(becoming certain of) the event provided you with a lot of 
information 

• The score coincides with the negative objective information gain if 
what you become certain of is also the truth – a subtle difference, 
but not unimportant for a scoring regime (issues will close on 
certainty, not truth as such) 



Proper scoring rules, information gain and 
uncertainty, contd. 
• The expected score for a given problem is, then, the negative 

uncertainty (p-expectation of negative subjective information gain 
upon certainty) 

• The expected score change after a soft update (not to certainty) is 
(almost) the negative subjective information gain (q-expectation of 
negative objective information gain) 

• For this to work out, there needs to be an overlap between the 
probability that a given hypothesis is true and the probability that 
a given hypothesis is the one that a scoring regime will accept 
certainty of at some point 

• If not, it of course gets more complicated… 
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